01.02.2024 - Cash Award Math Rider

Author's Solution

Construction :

Join and produce CO to meet AB at F. Let DE & CO cut at I. Join DF & EF. Let AO & EF cut at G and let BO & DF cut at H.

Proof:

In $\triangle ODC$, DI is the angle bisector

$$\therefore \frac{OD}{DC} = \frac{OI}{IC} \tag{1}$$

But, as per Concurrency Theorem

(available in this site),

$$\frac{OI}{IC} = \frac{OF}{FC} \quad \dots \quad (2)$$

(1) & (2) $\rightarrow \frac{OD}{DC} = \frac{OF}{FC}$

 \Rightarrow DF is the external angle bisector of $\triangle ODC$ for its angle at D.

 \Rightarrow DF or DH is the bisector of $\angle ODB$

 $\Rightarrow \frac{OD}{BD} = \frac{OH}{HB} \quad \dots \qquad (3)$

Now, in $\triangle ABC$, AD, BE & CF are cevians concurrent at O.

: As per Concurrency Theorem (available in this site),

 $\frac{OD}{DA} = \frac{OG}{GA}$ (4)

$$(1) + (3) + (4) \rightarrow$$

$$\frac{OD}{DC} + \frac{OD}{BD} + \frac{OD}{DA} = \frac{OI}{IC} + \frac{OH}{HB} + \frac{OG}{GA} - \dots (5)$$
But as per Unity Pieces Theorem (available in this site),
$$\frac{OI}{IC} + \frac{OH}{HB} + \frac{OG}{GA} = 1 - \dots (6)$$

$$(5) \& (6) \rightarrow$$

$$\frac{OD}{AD} + \frac{OD}{BD} + \frac{OD}{CA} = 1$$

$$\Rightarrow \left[\frac{1}{AD} + \frac{1}{BD} + \frac{1}{CD}\right] = \frac{1}{OD} - \dots - Proved$$
