01.02.2024 - Cash Award Math Rider

Author's Solution

Construction :

Join and produce $C O$ to meet $A B$ at F. Let DE \& CO cut at I. Join DF \& EF.
Let $A O$ \& $E F$ cut at G and let BO \& DF cut at H.
Proof:
In $\triangle O D C, \mathrm{DI}$ is the angle bisector
$\therefore \frac{O D}{D C}=\frac{O I}{I C}$
But, as per Concurrency Theorem
(available in this site),

$\frac{O I}{I C}=\frac{O F}{F C}$
(1) \& (2) $\rightarrow \frac{O D}{D C}=\frac{O F}{F C}$
$\Rightarrow \mathrm{DF}$ is the external angle bisector of $\triangle O D C$ for its angle at D .
$\Rightarrow \mathrm{DF}$ or DH is the bisector of $\angle O D B$
$\Rightarrow \frac{O D}{B D}=\frac{O H}{H B}$
Now, in $\triangle A B C, \mathrm{AD}, \mathrm{BE} \& \mathrm{CF}$ are cevians concurrent at O .
\therefore As per Concurrency Theorem (available in this site),
$\frac{O D}{D A}=\frac{O G}{G A}$
$(1)+(3)+(4) \longrightarrow$
$\frac{O D}{D C}+\frac{O D}{B D}+\frac{O D}{D A}=\frac{O I}{I C}+\frac{O H}{H B}+\frac{O G}{G A}-----------------\quad$ (5)
But as per Unity Pieces Theorem (available in this site),

$$
\begin{equation*}
\frac{O I}{I C}+\frac{O H}{H B}+\frac{O G}{G A}=1 \tag{6}
\end{equation*}
$$

$(5) \&(6) \longrightarrow$

$$
\frac{O D}{A D}+\frac{O D}{B D}+\frac{O D}{C A}=1
$$

$$
\Longrightarrow\left[\frac{1}{A D}+\frac{1}{B D}+\frac{1}{C D}\right]=\frac{1}{O D} \text {-------------------------Proved }
$$

